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1. Introduction

The computation of electric and magnetic fields at dielectric boundaries
must take into account interrelated boundary conditions, two involving
normal components of the electric and magnetic fields and four involving
tangential components of these fields. In a few simple cases, it is possible
to determine the configuration of the polarization or propagation modes
from general principles and to apply boundary conditions separately to
each mode. For example, in the derivation of the Fresnel equations, which
describe refraction of a plane wave at a planar surface, boundary condi-
tions are applied separately to the s and p polarizations, with the electric or
the magnetic fields in the plane of the surface. There are only three bound-
ary conditions for each polarization, and the magnitudes and propagation
directions for each are determined readily. Similarly, the lowest-order
propagation modes of a dielectric fiber, which have no azimuthal field
variations, are transverse electric and transverse magnetic [1], each with
only three components; the magnitudes of the fields and propagation con-
stants can be computed separately for each mode.

When the modal configurations are not known, two approaches can be
taken to determine the fields. In one approach, four independent field con-
figurations that account for all possibilities permitted by Maxwell’s equa-
tions are constructed in such a way that the corresponding field compo-
nents—tangential and normal electric and magnetic components—on each
side of the interface are proportional everywhere on the interface. The con-
tinuity conditions at the boundary are applied to four of the components
(e.g., the two tangential components of the electric and magnetic fields) to
determine relative magnitudes of the four field configurations. This
approach was used by Mie [2] to describe scattering from a dielectric
sphere, and by Hondros [3] and Hondros and Debye [4] to describe propa-
gation in a dielectric fiber.

The other approach uses electromagnetic scalar potentials, which are pairs
of scalar solutions to the wave equation from which the electric and mag-
netic fields can be derived. Debye [5] used a pair of potentials (known
today as the Debye potentials) to describe scattering from a dielectric
sphere, which is the same problem that was solved by Mie. Debye devel-
oped expressions for the fields in terms of these functions, and he
described boundary conditions that the scalar functions and their first
derivatives were to satisfy on the interface (see eq (68)). To satisfy these
conditions, Debye found scalar functions in which the values of the two
functions and their normal derivatives were proportional on each side of
the interface.

In addition to the Debye potentials, other pairs of electromagnetic scalar
potentials have been investigated. Whittaker [6], who appears to have
been the first person to realize that electromagnetic fields could be derived
from two scalar potentials, described a pair from which fields due to mov-
ing point charges could be computed. Green and Wolf [7] used a different
pair of potentials to compute the energy and momentum of electromag-
netic fields and to construct a Lagrangian. Nisbet [8] developed a general
transformation that relates possible pairs of scalar potentials, and Stratton
[9] gave a simple expression for magnetic vector potentials in terms of an
arbitrary set of scalar potentials (see eq (66)).
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More recently, a representation of electromagnetic fields in terms of a dif-
ferent pair of scalar functions was developed by Morgan, et al [10] and
extended by Morgan [11] for computing propagation through nonuniform
dielectrics. These scalar functions—coupled azimuthal potentials—are not
electromagnetic scalar potentials in the sense discussed above, because
they do not independently satisfy the wave equation. Instead, they are
solutions to a pair of coupled, second-order differential equations. Solu-
tions are found by assuming Dirichlet boundary conditions at a geometric
boundary of a body and computed across a dielectric interface somewhere
within the body by a finite-difference method that begins at the geometric
boundary. Moser, et al [12] used coupled azimuthal potentials to calculate
frequencies of scattering resonances of bodies of revolution for application
to target recognition. Several other applications are referenced in the paper
by Morgan [11].

The requirement that both the scalar functions and their derivatives be
proportional everywhere on each side of a dielectric interface, such as the
arrangement represented for the Debye potentials in equation (68), is diffi-
cult to satisfy for complex geometries. Because of the spherical symmetry
of his scattering object, Debye was able to express his scalar potentials in
terms of spherical wave functions, and to satisfy the four continuity condi-
tions with those functions. Most often, however, the forms of the functions
are not known from general considerations, and a search for functions that
match at the interface can be difficult.

In this report, it is shown that the scalar function that is zero at the surface
and the one whose normal derivative is zero can be used as scalar poten-
tials. Using these functions reduces the number of proportionality condi-
tions at the boundary that must be considered from four to two, which
relates the normal derivative of the first function and the value of the sec-
ond function on each side of the interface. Boundary conditions at the
interface are expressed in terms of these functions, and expressions for the
electric and magnetic fields in terms of these functions are so derived.

It should be pointed out that the scalar potentials that satisfy the Dirichlet
and Neumann conditions are used implicitly in the solution of boundary
value problems involving perfect conductors. Here, a tangential compo-
nent of the electric field is equated with a scalar function that is zero on the
conducting surface, and a similar tangential component of the magnetic
field is equated with a scalar function whose normal derivative is zero. For
example, in the determination of fields in a conducting waveguide, the
longitudinal electric and magnetic fields can be represented by the two
scalar functions, and the transverse fields can be derived from these
functions.

In the following sections, a set of equations is derived that describes
boundary conditions in terms of magnetic vector potentials. The vector
potentials are expressed in terms of scalar functions that obey the Dirichlet
and Neumann boundary conditions. Solutions in terms of the scalar func-
tions are found for the equations that describe boundary conditions at a
dielectric interface. These solutions are combined in a way that satisfies the




radiation condition. There are two possible combinations, which are iden-
tified with propagation modes or polarizations. Through the equations
that relate electric and magnetic fields to the vector potentials, these fields
are also expressed in terms of the scalar functions. To demonstrate this
approach, the methodology is used to derive the Fresnel equations. The
methodology is also applied to find fields bounded by a conducting
surface where, unlike the dielectric interface, there is no continuity
requirement at the boundary, and differences between the two situations
are discussed. Finally, the scalar potentials defined in this paper are com-
pared with those used by Debye [5] and by Morgan, et al [10], and similari-
ties and differences are discussed.

A two-dimensional approach is taken here by representing fields and
potentials as products of functions of two coordinates and the exponential
exp(-iayz), where z is the third coordinate. The results are directly appli-
cable to a uniform waveguide (where the third coordinate is the longitudi-
nal distance), or to a rotationally symmetric scatterer (where the third
coordinate is in the azimuthal direction about the axis of symmetry).




2. Boundary Conditions for Vector Potentials

The boundary conditions for the vector potentials arise in a natural way by
multiplying them by step functions that change from zero to one at the
interface, and taking derivatives in the usual way. The coefficients of the
delta function that result from the differentiation are the boundary condi-
tions, and the coefficients of the step function make up the homogeneous
wave equation for regions of constant permittivity and permeability. This
approach was demonstrated for the electric and magnetic fields by von
Roos [13] and is applied here, in a similar way, to sets of vector potentials
that terminate at a conducting surface, and which are transmitted through
a dielectric interface.

Consider first the fields produced on a perfectly conducting surface.
Assume initially that the surface is planar, with a coordinate system
shown in figure 1. The normal to the surface is in the x-direction. In terms

- of vector potentials, the Maxwell’s equations for the fields are

Figure 1. Directions of
radiation incident on
a conducting surface.
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VxVxA+£ou%t—24+eou§Vd>=uj5(x) , (1)
and
2 dA 1
Vio+V. §=~E;p5(x) / (2)

where &x) is a delta function, and (A,®) are products of these solutions
and the step function:
A(x, Y Z)= T(x)Ao (xr Y Z) ’ 3
® ()= TP, 00y, 2) ®
where (A,,®,) are solutions to the homogenous equations that result when
the right sides of equations (1) and (2) are zero.

The step function is defined as
T(x)=0 ifx<0,
=1 ifx>0 . @
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Substituting equation (3) into equation (1) and applying vector identities
gives

) 9%A, o0,
v Ao—eouﬁ——V V-A0+eo;1——ét—— T(x)

2 dA dA
Ay082'+2 pd?_ mﬂg
dx? ox dx oy dx

A aZT+28Azoﬂ_ano£’E
“9x2 T ox dx 9z dx

+

©)

+ z= ‘#]5(?5) ’

where A, is the y-component of A, and, similarly, for the other coordi-
nates. In like manner, equation (2) may be expressed as

dzr+ 99, dr anodrl_ 1 | (6)

The first lines of equations (5) and (6) are identically zero, because the com-
ponents of (A,,®,) satisfy the wave equation and, together, they obey the
Lorentz condition

+—2L4 WAz +_1_a(1)0 =0 .

ox 0y 9z |2 ot @)

The other terms of equations (5) and (6) define the boundary conditions.
To evaluate them, use the derivatives of 7, given by [14] as

Ex*=5(X) P
d*t__ @) ®)
dxz_ x
These terms become
A 0A 0A A 0A,, 0A
Yo _ Yo ol = 20 20 il P
ox) p, 2 ™ + Y y+6(x)(x 2 gy + az]z
e - ©9)
80) uliy y+j.2)
and
®, 00, anol p
5(x)—x“—2 * —5(x)E;- ‘ (10)
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Terms with x in the denominator have meaning only if the numerators are
zero at the boundary. In this case, the ratio can be expressed by a deriva-
tive. With these substitutions, the boundary conditions become

®,=0,
A2=0, (11)
Ap=0,
and
o, . dA,, _ 1
x o gl
aAZO—aAXO _ ﬂ].
=—uj,
ox oz (12)
EMw_aAm__.

The corresponding boundary conditions at a dielectric interface are
derived by setting the right sides of equations (1) and (2) to zero and repre-
senting the potentials and permittivity by

(D=(1—T)(D1+Tq)2 ’
A=(1—T)A1+TA2 ’
e=(1-9& +185,,

(13)

where (A;,®,) and (A,,®,) are the solutions to the homogeneous wave
equations in media 1 and 2, and ¢, and &, are the permittivities in the two
media. Similar to the potentials described above, (A;,®,) and (A,,®,) obey
the Lorentz condition. Applying vector identities as before and gathering
coefficients of the delta functions gives the boundary conditions at the
dielectric interface in terms of vector potentials

(I)l = @2 ,
Apn=A4A, ., (14)
Ap=Ay ,
and ,
o T T T |
ox oz | | & oz |’ (15)
& | | oy’

These boundary conditions for the vector potentials are equivalent to the
usual boundary conditions for electric and magnetic fields. Equation (14) is
related to the continuity of the tangential components of the electric field E
and the normal component of the magnetic induction B across the inter-
face. Members of equation (15) are statements of the continuity of the nor-
mal component of the electric displacement D and the tangential compo-
nents of the magnetic intensity H at the interface.




3. Scalar Functions at a Boundary Surface

Two sets of potentials will be computed separately. In the first set, three of
the potentials are zero at the boundary and the normal derivative of the
vector potential component normal to the surface is zero. These are the
conditions of equation (11), and the potentials in this group are also the
expressions for the potentials at a perfectly conducting interface. The sec-
ond group of solutions obeys a set of conjugate boundary conditions for
which the normal derivatives of the first three potentials and the fourth
potential itself is zero. We express each of the vector potentials in terms of
the functions

ulx, y)exp [-i(@,z- ot)] ,

vy, y)exp [~i (@, z- ot)] , (16)

where u (x,y) and the normal derivative of v (x,y) are zero on the boundary.
Anticipating that we will want expressions for fields that are valid for sur-
faces of any orientation of the boundary in the (x,y) plane, we seek repre-
sentations for vector potentials that are rotationally invariant in this plane.
A set of expressions for the first group of solutions that satisfies these con-
ditions is:

D;=¢yquyg ,
Ag=ayquy,
A —id ou; . 0y
y1 =t 11@”‘711? , 17)
ou; . ovy
Axl =

iduy—mu T

where (11, 4,11, d11, 411) are constants. In these equations, the subscripts on
the potentials (®;,4;) and on the scalar functions (u;,v;) refer to region 1.
The constants have two numerical subscripts: the first subscript refers to
the region, and the second subscript to the first or second set of solutions.

The coefficients (¢y, 4,11, d11, 411) are evaluated by substituting equation
(17) in which they are regarded as variables into equation (15) to produce
sets of linear equations. The Lorentz condition is used to eliminate d;;. In
matrix form, the equations for the remaining coefficients are

Ky wf K 0, © I o . FV
- WK14, 11 1
K 5
| K w0/ K o*/c? v
=l 0,4, amn|={ %
X 2 2 z
kiv,
0 Va
u/ox an 3
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for region 1 and, similarly, for region 2. Here k; and k? are the specific per-
mittivity and the square of the magnitude of the propagation vector, given
by

K;=€& i/ &y
2
@
k? = K{;E -?, (19)
dv1/dy . .
and 4; = F We assume g; is constant on both sides of the boundary.
Without losls of generality, we can normalize (1,0) so that their derivatives
are equal at the boundary
du; dup
ox  ox '
dvy v, (20)

v
As a consequence of this normalization, v, = v, and g; = ¢, hold.

The only quantities in equation (18) that are characteristic of the medium
are k; and k?. Equation (18) can be satisfied by solutions that lead to
(V1,V,,V3) that are not functions of either of these quantities. A set of solu-
tions for which this is true is

da w/c (1/x)o, (1/x)w,q
a.|=|w,/c|, w/ |, 0 ’ 1)
ay 0 0 (axoz)/(cki)z

where i is 1 or 2. The first of these solutions defines gauge transformations
and the other two lead to nonzero fields.

The second group of solutions to equation (15) can be written in terms of
(uv)as -

Dy =0150; ,
Ay =any0,
Ap=idg—+ iau?—ul )
o ax (22)

ol

Ap=id 1275, 4 127,




for region 1 and, similarly, for region 2. As in equation (17), these solutions
are rotationally invariant in the (x,y) plane. Their substitution into equa-
tion (15) leads to the following equations for the constants

oy ouq v, o, 2 o,
2 ¢1zg -4 1" wd12§ =& ¢22§? - wuzz@ - G)dzzg ,
ov Ju o o ou ov
ale_l - wz“lz“—l - wzdIZ'_l = azzz—z - wzuzz——z - a’zdzz—2 ’
P Py P P Py x| g
0%u, 0%, o%u, 0%,

alZaXZ +d12axay=a22ax2 +d22axay .

Both sides of each of these equations are identically zero because the
derivatives of u and v that appear in these equations are zero at the bound-
ary. The boundary conditions represented in equation (14), which were
identically zero for the potentials of equation (17), are used to evaluate the
constants in equation (22). Substitution of equation (22) into the first three
members of equation (14) gives:

91201 = 9220, ,

A712U1 =8;207 ,
gU—l+a %=d Ez)—2+a % @
ay 12 o 22 ay 22 o
The Lorentz condition may be used to eliminate one of the constants, as
before. The resulting equations can be expressed in matrix form as

d12

1 0 0 ¢ | | W

0 1 0 ||ag|=|W|.
(25)
do/cly  og
—a = 1 ||ez| (W

ki ki |

J

As with equation (18), equation (25) may be satisfied by sets of constants
that yield values of (W;,W,,W;) that are not functions of ; or k2. A set of
linearly independent solutions is

¢1’2 CU/C 0 0
an|=|aw,/c|, w/c* ,| O
(26)
2 @3 2
ayp 0 (a)/c) 1+—Z—q w/c
| | @ k? @; |
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As with equation (21), the first of these solutions defines gauge transfor-
mations and the others define propagation modes.

The electric and magnetic fields can be computed by substituting the
potentials described by equations (17) and (22) into the equations for the
electric and magnetic fields, which becomes

B=VxA,
v 94 (27)
E=- Vo 5

It is convenient to define the quantities
bi'—"(ail vi+ai2ui) o8
€= (1/ki2) (@, 01— 0a,4) u;+(0, 6, — wa,) v , (28)

where the subscript i denotes regions 1 or 2. In terms of these quantities,
the electric and magnetic fields are

%i K',-a)aei %i aei
By x 2 oy Exi=w5y—+wz$r

ob; K;woe; ab; ade;
O s TRy

Substitution of the first solutions of equations (21) and (26) into equation
(29) yields values of b; and e; that are zero, which verifies that these solu-
tions define gauge transformations.

General expressions for the sets of constants in equations (21) and (26) that
lead to nonzero fields may be constructed as linear combinations of the
second and third solutions:

¢a| |(I/x) o, (1/x) 04

ai|=t| @/ |+ 0 (30)
a; 0 (ww,)/(ck)) 2
and
Pir 0 0
aizz = t3 w/C + t4 O ’
(31)
(@/A) [, ol w/c*
an I+—
wZ ki wz




where (ty, t5, t3, t,) are constants. Substitution of equations (30) and (31)
into equation (28) leads to expressions for b; and ¢; in terms of (t;, t,, t3, t,):

ol 5‘1 @ Y

b5=—?Ezt3(1+ 12)+t4 ul—*E ?tzv,,

es——l tl—tz@ i~ 1o t3v; 2
K; k? k? c?

Because the values of (b;, ¢;) are independent of the orientation of the coor-
dinate system in which (u; v;) were defined, equation (32) holds for any
point on the interface, provided that g has the same value at every point;
the functions u and v must be divided into components for which this is
the case. For example, if the interface is planar, u and v might be

u~u@exp(-io,y),

v~vx)exp(-iw,y) . (33)
The ratio g would be
_ —iow ()
q - au (x) /ax M (34)

The ratio ¢ is a function of @, implying that propagation across the inter-
face would be different for components of different w,. The condition that
q be constant and the conditions of equation (20) are requirements for the
functions u and v at the interface.

It was assumed initially that the boundary of the region where fields are
calculated was planar. Since the fields in this two-dimensional problem are
proportional to u and v or their first derivatives, this restriction can be
dropped because surface curvature enters only in the computation of sec-
ond derivatives.

15




4, Radiation Condition

Figure 2. Local
coordinate system on
interface between two
dielectrics.
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In addition to the boundary conditions at the dielectric interface, another
condition must be satisfied: radiation that propagates across the interface
must be outgoing or exponentially decaying. In the configuration of figure
2, radiation is incident from region 1 and radiation outgoing in region 2.
This configuration places constraints on possible values of (t,, t, t5, t4). To
calculate these constants, we can express u; and v, as functions of outgoing
and incoming radiation functions f and g as

u,=a,f+ag,
v+ B, f+Bg .

where f represents outgoing or exponentially decaying radiation and g
represents incoming or exponentially growing radiation. The quantities b,
and e, become

(35)

w @
by=- {aoaz) ! t3(1+—zq)+t4 +B,= zztz}f
z kz C 2
36
) LA P +t4+,B———t %6)
0, k3
and
2 2
1 wq 1l w
ey=—{ a,— |t; - B,— =t
2 {ole 2k% okgzs}f
2 2
1 w4 1l w (37)
~{a—|t; -t - .
{a’fz 1~k K2 .Bk% 2 t3}g
region 2
e=¢g e

region 1
E=¢€)




The coefficients of g must be zero. Equations for aand f are

1) 1)
0(22i by|1+— |+ 1 +ﬂ~az—)—zzt2=0 ,
C wz k2 C k2
2 2
1 wq 1w (38)
o— tl—tZ—T ﬁ‘—2—2t3=0 .
k: 2 k ¢

Because these equations are homogeneous, they can only have nonzero
solutions for a and Bif the coefficients of oand f in each equation are pro-
portional. Let T be the constant of proportionality, defined by

2
Ko
c
In terms of T, equation (38) is
~ 2,2
) K5 lo°/c
k3 k3
2,2 2,2
o\ /c KA@ /¢ 40
alt - Al 2 )ths B A )t3=0. (40)
k k2
2 2

The coefficients of o must also be proportional, as in

2 2,2
w w0 (@?/cYq
k3 k2

Equations (39) and (41) may be used to eliminate ¢, and t, from the expres-
sions for b, and e,. Equation (40) may be used to express t; in terms of the
ratio B/ a. These expressions for (ty, t,, t3, t,) may be substituted into
expressions for b, and e;, which are similar to equations (36) and (37), with
k, replaced by k;. The result is

R NN Y B G
Vel K ke KBe,
e=2fp(l_1) 1B 1/ (42)
V|2 k2 e e
A similar expression for medium 2 is
w1l K
b2=T'—i—'—2—(£u2 '02),
c wzkz o
1 43
ez——z(—éuz—vz). ( )
ky \&

17
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All the electric and magnetic fields may be derived from (b, ) using equa-
tion (29). The parameter T defines propagation modes. It is often conve-
nient to define modes with T = 0 and T = e, but it is not necessary to do
this. Any two values of T will define linearly independent sets of (b, ¢) in
terms that may express all other possibilities.

Although this derivation was carried out with a radiation condition in
mind, the result is more general. The procedure is valid because the two
independent solutions (u, v) to the wave equation can be expressed as a
linear combination of two different solutions (f, g). The functions (f, g) may
represent solutions that are physically admissible or inadmissible. In this
case, the admissible solutions were outgoing or exponentially decaying,
and the inadmissible solutions were incoming or exponentially growing.




5. Fresnel Equations

The simplest interface between two dielectric media is a plane. Figure 3
shows incident and reflected waves in medium 1, and an outgoing
refracted wave in medium 2. We assume that the waves are planar, with
directions of propagation in the x-z plane. The radiation has no depen-
dence on the y-coordinate. In medium 2, the functions u and v are

Uy =axexp (-iw,z)sinw, x ,

vy =exp (- iw,z) cos w, x . (44)

For outgoing and incoming radiation, the functions f and g, are

f=exp[-i(@,z+ o) ,
g=exp[-i(w,z- 0¥ .

The constants @ and S are

(45)

a=-i@/2),
ﬁ=1/2 ’ (46)
B/a=i/a .

Functions u; and v; in medium 1 are defined so that

ouy/ox =0uy/ox ,

U1=0y . (47)
With these normalizations, #; and v, are

U =a (wﬁ/wxl) exp (~iw,z) sin wx ,

vy = exp (- iw,z) cos wx . (48)

Figure 3. Planar
interface between two
dielectrics and
directions of
propagation of
radiation.
region 2
E=Ep

region 1 y
£= 81
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The ratio of derivatives g is zero, because v has no dependence on y. With
this value of ¢, equations (42) and (43) become

o
b1=T9—2(Lul-lvl),

¢® O\ ak3 k?
e —ﬂ __i_u __1_v (49)
Ul ) 2

and
o 1l
b, =T 2l(1u2—v2) ,

2o, 2a
i (50)
esz—‘zz(zuz“‘vz) .

Substitution of equations (44) and (48) into these expressions gives

b=T2 2221 o x-Lcoswyx exp (- iw,z)
1=4 55— = 1¥-— 1 - /
C2 W\ Wy k% * k% * ‘
e =[i222 1 oo x-L cosmx|ex (~iw,2) 1)
1 K| 0y k% x1 k% x1 % z%) 7
and
K
bzsz-Z);z%(isin Wyp X = COS WpX) exp (- iw,z) ,
c Z Ry
(52)

1, . .
ezzﬁ(z sin @,, x — €08 W,Hx) exp (- iw,z) .
2

The quantities (by, e;) and (b,, e;) may be expressed in terms of incoming
and outgoing waves as in

1 T Kz(w/cz) [

by=-= (0p— @) e + (@ + 0y) e x| exp (~iw,z) ,
2 wzwxzwyzcl
- 1 _ 10y —it0,1% o (53)
e;= 5 [(Klwxz K1) €'Y + (K10 + Ky00,) € ]exp( i0,2) ,
2K10,p0
and
by=—T K'Z(CO/; ) o i0% exp (__ ia)zz) ,
W,0
€y =— Lz 7922 exp (-iw,2) . (54)
Wy




Because of the lack of dependence of (b, €) on y, the equations for the elec-
tric and magnetic fields given in equation (29) simplify to

ob oe
Bx=wzg ’ Ex=wza; ’
B,=X2%® p__,%

(55)
B,=ik%, E,=ik%,

where (k, k?) stand for (k;, k?) or (K3, k?), depending on the medium in
which the fields are evaluated. Equations (53) and (54) are substituted into
equation (55) to produce values of the B and E fields.

The parameter T defines the polarization modes. If T is large, ¢, by com-
parison, is small, and B, E,, and E, are, effectively, zero. This condition
defines the mode in which the electric field is perpendicular to the plane of
incidence and refraction. Apart from factors that are common to both
regions, the fields for this mode in region 1 are

~10,1X

B,= —% @, (@0~ 0y) e'Ox* 4 % @, (00 + 0y)e

1 iwqx 1 —i0,1%
Bz=_5 @x1 (wa—wxl)e xl T %n (wx2+ wxl)e -,
; , (56)

iw,qx —w,1x

E, =3 (0, — w,) 21 -5 (W + wy)e™ 1",

and, in region 2, are
—-i,1%
BX = wz wxz e x1 ’

— 2 i

E,=- 0, 00"

Likewise, if T is zero, b is zero in both media and B,, B,, and Ey are zero.
This value of T defines the polarization mode in which the magnetic field
is perpendicular to the plane of incidence and refraction. The fields for this
mode in region 1 are

1 Cl)‘ iwqax 1@ —-iw,1x
By-‘*az(’ﬁ Wy = Ky W) €11 -E“C—(Kl Wy + Ky Oyy) €701

1 0L iwgx 1 @L —iW,1X
Ex=§—x—(’f1wx2—’f2wx1)e 1 ‘E?(Klwﬁ"'xzwxl)e sl

1 1 (58)

1 ©yC iw.1x Wy C —i@,1X

EZ=§ - (Klwxz—xza)xl)e x1¥ 4 - (1 @0 + Ky W) €7,
1
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Figure 4. Definition of
angle 6 that direction
of propagation makes
with surface normal.
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and, in region 2, are
—ia)xlx
z

B = (1))
y—”Kz?wxze

E,=-0, 00" 0¥ ’ (59)

E,= 0% e "

The Fresnel equations are usually expressed as ratios of reflected and
refracted fields to the incident fields, and the fields are expressed in
terms of the angle between the direction of propagation and the surface
normal. The geometry is illustrated in figure 4, which shows the
wavefronts, the direction of propagation, and the coordinate system in
which the x-coordinate is normal to the surface. The spatial frequencies w,
and @, may be expressed in terms of the angle 6 as

o .
wz=\/E;sm0,

60
a)x=\/E%)cosl9. (60)

Substitution of these relationships into equations (56) through (59) leads to
the more common form of the Fresnel equations [15].

X




6. Boundary Conditions at a Conducting Surface

The first group of solutions for boundary conditions at a dielectric inter-
face (eq (17)) can be used to describe boundary conditions at the surface of
a conductor; these potentials satisfy the boundary conditions of equation
(11). Substitution of equation (17) into equation (12) lead to linear equa-
tions for the constants

du o__p
(¢ wd)a;—wa@_ 80 ’
ou ov .
(az_wﬁ)g_wza@‘:”:u]z ’ (61)
—ikzavz—,ujy ,

where the subscripts on (¢, 4,, d, a) that denote the region and the set of
solutions have been dropped. The Lorentz condition is invoked, as before,
to eliminate the constant d, leading to three equations for the three remain-
ing constants. In matrix form, these equations are

( w? o, F
g ¢ p/&,

K2 K2

u| olo/) o’/ 04 a,|==|
ox K2 K2 z z | )
0 _ kz (4 .
0 k= T a My
where, as before, g = %Z% A set of linearly independent solutions to the
matrix equation is
0 w/c , 04
al=|o,/c|, |w/?|, (ofq/a) 63)
a 0 0 -(ww,)/ (ck)?

The first solution has an eigenvalue of zero and defines gauge transforma-
tions. The third solution differs from that of equation (21). It will be shown
that these solutions define TM and TE propagation modes, where the
direction of propagation is in the z-direction. The modes resulting from
these solutions will be the same as those modes usually employed to ana-
lyze conducting waveguides; however, any pair of linearly independent
solutions that lead to nonzero charges and currents, and that is also inde-
pendent of the gauge solution, defines physical field configurations.
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The electric and magnetic fields are computed as before by substituting
equation (63) into equation (28). The fields are

o ou ou
Bx"—c_z"a—y—' Ex'a)zgx'/
® du ou
B=%%=, E,=w,—,
VT 2 ym 2 oy 64)
B,=0, E, =ik,
and
B _0 0 E —E’E_EQU_
i TRkt
g -2%d E :_22_&%
VU 22y VT2 2 (65)
0w
B,=i—"0, E,=0

Although the vector potentials were computed at a single point of the
boundary, the only quantity that characterizes individual points (the ratio
g) does not appear in the expressions for the fields. Unlike the dielectric
interface, computations at any point on the conducting surface lead to the
same equations for the fields, even if q is not constant. Moreover, as a con-
sequence of the rotationally invariant forms in equation (17), the forms of
equations (66) and (67) are also invariant to rotations in the (x, y) plane.
These are the equations for the fields in a conducting waveguide [16], rela-
tive to any coordinate system whose z-axis is in the direction of propaga-
tion. With different variables, they also describe other two-dimensional
problems.




7. Discussion

The three orthogonal magnetic vector potentials are represented as [9]

A 5 = VWI
A,=Vx(s y/_,) (66)
Ap=VxVx(sy) ,
where s is an arbitrary constant vector that has been called the pilot vector
[17] and y; is a scalar solution to the wave equation. The electric potential
@ can be constructed from the other components of A, A,, or A;by using
the Lorentz condition (eq (7)). The vector A; and the potential ® that is
associated with it define gauge transformations; the electric and magnetic
fields associated with this set of solutions are zero. For each Fourier com-
ponent ,, the subscript in equation (66) can be 1 or 2, because there are
two independent solutions to the scalar wave equation. Excluding the
gauge solutions, four sets of solutions to Maxwell’s equations are repre-
sented in equation (66). This representation is consistent with the four
solutions in equations (30) and (31). Different sets of scalar potentials arise
through choices of the pilot vector s, the independent scalar solutions y;,

and the choice of gauge.

The Debye potentials can be related to equation (66) by choosing the pilot
vector s in the x-direction, normal to the interface. The solutions to
Maxwell’s equations in this case are

o | ioy, o | 0

A\ _|owi/a| | dvi/dy R

Ayl |owiy|” | dwiez | Oy /xdy ")
Ay [owirax 0 ~(0%wi/ay? + 3*y/a?)

where y and z are directions that are locally tangent to the interface. Substi-
tution of the second and third solutions of equation (67) into the equations
for the electric and magnetic fields (eq (29)) leads to sets of solutions with
electric or magnetic field components of zero in the x-direction. This prop-
erty was used by Debye to define these potentials [5]. By using the conti-
nuity of tangential components of E and H at a dielectric interface, Debye
derived boundary conditions that the potentials obey at the surface of a
sphere of radius a as

az ryq1 (kl a) : az TYoy (k2 a)

o or?
&1 Y11 (k1 a) =€ ¥ (k. 9)
O rypy(kya) 9 ryy(kya) (68)
A

H1 vz (ki) =1 yp (kaa)
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where the first subscript refers to a dielectric region and the second sub-
script refers to the scalar solution to the wave equation. Debye computed
scattering intensities by constructing solutions that obeyed the radiation
condition in the outer region that were finite in the inner region, and that
obeyed the boundary conditions of equation (68). If the vector s lies in the
z-direction in the plane of the interface, a set of solutions is

(1] ioy; 0 0

ALl |-oyy; 0 i(ki/ ;) v;

Ay |owi/dy| " |-dwi/ox| | owi/dy | (69)
Ayl |oyi/ox oy;/ oy oy;/dox

If one of the scalar potentials is taken to be u (x, y) and the other v (x, y),
these solutions can be combined to give the potential forms of equations
(17) and (22). For equation (17), the gauge solution is combined with the
last solution (both with scalar function u (x, y), and the combination is
added to the second solution, with scalar function v (x, y). The forms of
equation (22) are found in a similar way.

The coupled azimuthal potentials developed by Morgan, et al [10] can also
be described by equation (66). They were developed using cylindrical
coordinates, although the development can be extended to other coordi-
nate systems. In the notation and unit system used here, fields resulting
from the coupled azimuthal potentials are

T rlae V& T r\og &
1 4(82%“-&,3*#_2 1 _1(82%_@3%)
o r\ae H o t ¢ r\a@e )
lp 1,19 1.1, 13
”fm¢c21r28¢2 rfm(pczzrzaqbzl
where
fo=llor/g?-m? ", (71)

and the azimuthal dependence is of the form exp(im¢), where m is an inte-
ger. The permittivity € and the permeability i are assumed to be functions
of the coordinates (r, z). If they were constant, and if the quantity (rf,,)™
were not in the definition, equation (70), without this factor, could be
derived from potentials of the form of equation (66), with the pilot vector
s in the ¢ direction. In this case, the potentials would not be coupled, but
would satisfy the wave equation individually.

Bouwkamp and Casimer [18] derived a relationship between the Debye
potentials and current distributions. They showed that, if the fields of the
eigenfunctions of a dielectric sphere were generated by currents, the fields
resulting from an electric multipole distribution of currents would be
derivable from one of the Debye potentials, and those fields resulting from




magnetic multipole distributions would be derivable from the other. The
scalar potentials u (x, y) and v (x, y) can be related to surface currents. Com-
ponents of equation (21) satisfy the boundary conditions of equation (11)
and can be associated with currents. These components can be substituted
into equation (61). The first component is the gauge solution and leads to
charges and currents of zero. The second component leads to the equations

for surface currents

and the third leads to

oo _ .
“?&‘ﬂ]z

0=puj, ,

02 o 3

CEC

. @ o
lngv—ﬂ]y .

(72)

(73)
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8. Conclusions
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The preceding sections describe an approach for computing electric and
magnetic fields using scalar solutions to the wave equation that are zero at
an interface and have normal derivatives of zero at the interface. The use of
these two functions simplifies their matching at the interface. The scalar
functions are computed from the locations of the interface and the con-
stants (g, u) that characterize the regions. Boundary conditions for the elec-
tric and magnetic fields have been satisfied by forming linear combina-
tions of pairs of scalar functions that solve the wave equation.

The computations presented here are two-dimensional. At a dielectric
interface, it is assumed that the ratio g of the derivatives of the scalar func-
tions is constant along the boundary of the two-dimensional region, and
that the normal derivatives of u are proportional on each side of the inter-
face. These conditions imply that values of v are also proportional on each
side of the interface. The coordinate system must be chosen to ensure that
these conditions hold. These conditions replace the matching formulas of
equation (68).

Many analyses of boundary conditions at a conducting surface have been
carried out in terms of u (x, y) and v (x, y), although these functions are not
regarded as scalar potentials, but as representations of tangential electric
and magnetic fields, since, in this case, the tangential fields obey exactly
the same boundary conditions. It has been shown here that these scalar
potentials can also be applied to dielectric interfaces, and that they can
assist in simplifying computations in this case.
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